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The theroretical prediction of the existence of Clifford toroidal vesicles by Ou-Yang [Phys. Rev.
A 41, 4517 (1990)] has been confirmed by the experiment of Mutz and Bensimon [Phys. Rev.
A 43, 4525 (1991)]. However, the few nonaxisymmetric toroidal vesicles observed by Fourcade,
Mutz, and Bensimon [Phys. Rev. Lett. 68, 2551 (1992)] raise the question of why the formation of
nonaxisymmetric toroidal vesicles is so rare in comparison with that of axisymmetric ones. In this
report we are going to show that for a solution of the shape equation of membranes, the spontaneous
curvature co of nonaxisymmetric Dupin cyclide has to be zero, while axisymmetric Clifford solution
has no such restriction as shown by Ou-Yang [Phys. Rev. A 41, 4517 (1990)].

PACS number(s): 82.70.—y

Vesicles with toroidal topology are predicted to be sta-
ble for the Helfrich free-energy model [1], and have been
observed in partially polymerized phospholipid mem-
branes by Mutz and Bensimon (MB) [2]. Further-
more, calculations and experiments agree on the specific
toroidal shape , the so-called Clifford torus, an axisym-
metric torus such that the ratio of its generating circles
is v/2. Recently, in an interesting Letter [3], Fourcade,
Mutz, and Bensimon (FMB) report a richer observa-
tion of toroidal vesicles of diacetylenic phospolipids. To-
gether with the earlier findings by MB [2] the observation
supports recent theoretical predictions [1,4,5]. However,
their observation is not completely understood. For ex-
ample, Seifert [4] has questioned the quantitative analy-
sis in terms of the model for fluid membranes discussed
by MB [2] on two points: (1) One has to suppose that
the essential effect of the polymerization results in an ef-
fective spontaneous curvature cg. (2) If ¢g is large and
negative, the shape of lowest bending energy is no longer
the Clifford torus but rather a nonaxisymmetric shape.
If the corresponding spontaneous curvature is small and
distributed about zero, one would expect that apart from
the Clifford torus also nonaxisymmetric shapes occur. In
other words, MB’s finding [2] seems to have happened
only in rare cases. From the experimental side, contrar-
ily, MB [2] and FMB [3] only observed a specific family
of shapes, the Clifford torus, and, less often, the branch
of nonaxisymmetric Dupin cyclides generated by its con-
formal transformations. To explain this problem, FMB
has proposed a plausible explanation by assuming that
the partially polymerized vesicles are permeable on short
time scale, so in the early stage of their formation, they
can settle at the absolute minimum of the bending en-
ergy, i.e., the Clifford torus or its conformal transfor-
mation. But, the question of [4] is still not completely
settled, especially, on the selection between axisymmet-
ric and nonaxisymmetric toroids. In this report we are
going to show that the selection biased towards Clifford
torus observed by MB and FMB is consistent with an
exact solution of the shape equation of vesicles.

Indeed, if we suppose the spontaneous curvature ¢y to
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be zero the above selection problem arises as commented
in [4]. It is, due to Willmore [6], long known that when
co = 0 the Clifford torus and its inversion with respect
to any point possess the same shape energy. This de-
generacy should thus lead to the remarkable result: the
nonaxisymmetric Dupin cyclides will be more often ob-
served than the Clifford one, that is, just contradictory
to observation. In order to solve the dilemma we look
into the difference of the properties for the two types of
torus. If the essential effect of the polymerization should
be an introduction of an effective nonvanishing ¢p then
the dilemma would be solved. In [1] it has been shown
that the Clifford torus is an equilibrium shape irrespec-
tive of whether cp is equal to zero or not. Now the ques-
tion is what about the nonaxisymmetric torus?

It is noteworthy to look into the similarity between
membranes of amphiphilic molecular bilayer and molec-
ular layers of smectic liquid crystals in the Sm-A phase.
First of all, both kinds of molecular layers are of con-
stant thickness [7,8]. Secondly, in the molecular bilayer,
the long amphiphilic molecules stay perpendicular to the
membrane surface, and the director of the smectic lig-
uid crystal is also perpendicular to the smectic molec-
ular layer [7,8]. These geometrical similarities between
amphiphilic membranes and smectic liquid crystals lead
us to believe that the shape of toroidal vesicles is closely
related to the texture of smectic liquid crystals. Mathe-
matically, the focal conic texture of smectic liquid crys-
tals [9] comes from the formation of a series of Dupin
cyclides by the smectic molecular layers. Thus we would
expect that Dupin cyclide should be a solution of the
equilibrium shape equation of membranes [10]:

Ap—2MH +k(2H +¢o)(2H? —2K —coH) +2kV?H =0,
(1

where the Lagrange multipliers Ap and X take account of
the constraints of constant volume and area, respectively,
k is the elastic constant, H is the mean curvature, K is
the Gaussian curvature, and V2 denotes the Bertrami-
Laplace differential operator.
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Using usual Cartesian coordinates, Forsyth [11] gives
two equivalent implicit equations for a nonaxisymmetric
Dupin cyclide shown in Fig. 1,

(@® +y% + 22 — p® +0°)° = 4(az — ep)? + 40°y%,  (2)

(@ +y2 + 22— p? - b?)2 = 4(cx — ap)? —4b222, (3)

where the parametric constants a, b, ¢, and u are imposed
by the constraints of a? = b>+c? and 0 < ¢ < y < a. The
parametric form of curvature coordinates (p. 326 of [11])
and the first and second fundamental forms (p. 327) are
also involved in the early investigation. The parametric
form is

z = [u(c — acosfcosp) + b% cosd]/(a — ccosf cos ) ,
y=bsinf(a — pcosy)/(a — ccosfcos?p) , (4)
z=bsiny(ccosd — pu)/(a — ccosbcosy) ,

where 6 and v are two parameters of curvature coordi-

nates. The constants a, b, ¢ relate two conics involved in
a geometric definition of the surface, namely the ellipse

(x/a)® 4+ (y/b)2 =1, 2z=0, (5)
and the hyperbola
(z/c)® = (2/b)* =1, y=0, (6)

lying in perpendicular planes. Each conic is required to
pass through the foci of other, which imposes the addi-
tional constraint

a? =0+, )

The cyclide then can be seen as an envelope of a sphere
of variable radius moving so that its center lies on one of

Cross section of a Dupin cyclide in its planes of

FIG. 1.
symmetry.

the conics while the other conic is intersected in a fixed
point. The additional constant y is determined by the
choice of intersection point and, therefore, closely relates
the radius of the moving sphere to the position of its
center.

One of the most important properties of the Dupin
cyclide is that all its lines of curvature are plane circles
so that their parametric variables 6, ¥ range from 0 to
27. Using the parametric representation the coefficients
of the first and the second fundamental forms given by
Forsyth are

g11 =b%(ucosy — a)?/(a — ccosf cos)?
g22 = b%(u — ccos 0)%/(a — ccosfcos)? (8)
912=0,

and

Li; =b%cosy(ucosy —a)/(a — ccosfcosh)?

Lo =b%(u — ccos8)/(a — ccosf cos)? 9)
L2=0,
respectively. With Egs. (8) and (9) we find that the

Gaussian curvature K and the mean curvature H are
given by

K = Ly1L32/911922 = cos /(. — ccos8)(ucos — a) ,

(10)
and
_ 1 L11 L22 _ 1 COS’(ﬁ 1
H= 2 (911 + 922) a 2(pcosw—a +p—ccose !
(11)
respectively.

Given these we now can calculate all the terms given
in the left side of Eq. (1). Before getting into the actual
calculation we first simplfy the above tool formulas and
equations by setting a = 1 and k = 1. This change in
scale and in unit facilitates the mathematical expression
but does not cause any loss of physical generality. Using
the convenient contracted notations of A = cosé and
B = cos ) and letting g = g11g22 we first have

2V2H = \/ig_[aa(\/g/gn)aa + 0y (+/9/922)0y2H

=[3u? —1)A3B3 + v2c*pA’B?
+c2(c? — 3u? + 2)A%2B? — 2b%cuAB?
+c(3u? —2¢2 —1)AB + b*uB
+( = p?))/P(1 — B (u—cA)® . (12)

Defining the new parameter v = X + /2 and taking
some algebra we obtain the sum of the other terms in
the shape equation (1)
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Ap — 2)\H + (2H + co)(2H? — 2K — coH) = [(App® — yu® + 3)BA3B3 + (2cp® + 4yp® — 3Apu* — p)c? A% B3
+(2vp — 3Apu?)cA®B? + (9Apu3 — 9yu® — deop — 3)c2A2B?
+(3Apu — v)AB + (3App® — 5yut — 4cop®)cAB®
x(2co + 6yp — 9Apu?)c2 A2B + (8cop + 12yu? — 9Apu® + 2)cuAB?
—Apc® A® + (2cop* + 2vu® — Apu®) B® + (3Apu — )P A?
+(9App® — 9yp® — dcop — 3)cAB + (3App° — 5yp* — 4eop®) B?
+(2vp — 3App®)cA + (2uco + 4yu® — 3Apu® — 1)uB
+(App® — i + DI/ = pB)3(n — cA)?] . (13)

Substituting (12) and (13) into shape equation (1) and
then letting each coefficient of the term A™B™, where
m,n = 0,1,2,3, equal zero we find 16 equations for the
parametric constants b, ¢, u, Ap, v, and ¢g. The solutions
of these 16 equations fall into two categories. The first
case is for ¢ = 0. In this case we have to require a = b and
i = 1/+/2 but no restriction on the value of cy. From Fig.
1 one can find that this is the case of the axisymmetric
Clifford torus discussed in [1]. The other case is for ¢ #
0, which describes nonaxisymmetric Dupin cyclides (see
Fig. 1). In this case we find harsh constraints given by

and
p?=311+c?). (15)

The constraint (14) is easy to see from the coefficients
of A3, A%, A%B, and so on in (13). The constraint (15)
together with (14) can just cause all the coefficients of
A™B™ to vanish in the sum of (12) and (13). In other
words, (14) and (15) are the sufficient and necessary con-
ditions for the nonaxisymmetric Dupin cyclide as a vesi-
cle solution.

If we restore a to its original scaling, i.e., not restrict
a =1, (15) should read as

p2=1@?+c?). (16)

From this geometric constraint we see that among the
nonaxisymmetric Dupin cyclides only that branch which

—

is generated by the conformal transformations of Clifford
torus and satisfies the condition (14) may be observed,
though it might be that for nonzero co there exist non-
axisymmetric toroidal solutions close to these Dupin cy-
clides. On the other hand, as shown in [1], the Clifford
torus may be observed for co< — 3.9(47/A)/2, where A
is the total area of the vesicle, and it is sufficiently stable
in equilibrium. Seifert [4] and Fourcade [12] argued that
it should be stable as soon as ¢y is negative. It is now
clear that owing to the restriction (14) the nonaxisym-
metric Dupin cyclide happens only in rare cases, while
the Clifford torus can appear in many cases. Further-
more, direct measurement on the real nonaxisymmetric
unpolymerized fluid toroidal vesicle given in Fig. 1 of [3]
confirms the validity of (16).

In conclusion, the observation on the selection of
toroidal shape of partially polymerized membranes by
FMB can be explained in terms of the theoretical frame-
work of the fluid membranes modeled by Helfrich and
others. This selection in shape is also consistent with
a rich history of surface problems in geometry, e.g., the
famous plateau problems (soap bubble problem) char-
acterized by H=const. For this there is only a unique
solution of vesicle shape, the sphere.
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